IκBα degradation is necessary for skeletal muscle atrophy associated with contractile claudication.
نویسندگان
چکیده
The arterial blockage in patients with peripheral arterial disease (PAD) restricts oxygen delivery to skeletal muscles distal to the blockage. In advanced-stage PAD patients, this creates a chronic ischemic condition in the affected muscles. However, in the majority of PAD patients, the muscles distal to the blockage only become ischemic during physical activity when the oxygen demands of these muscles are increased. Therefore, the skeletal muscle of most PAD patients undergoes repeated cycles of low-grade ischemia-reperfusion each time the patient is active and then rests. This has been speculated to contribute to the biochemical and morphological myopathies observed in PAD patients. The current study aimed to determine, using a rodent model, whether repeated hind limb muscle contractions during blood flow restriction to the hind limb muscles increases NF-κB activity. We, subsequently, determined whether an increase in NF-κB activity during this condition is required for the increased transcription of specific atrophy-related genes and muscle fiber atrophy. We found that hind limb muscle contractions during blood flow restriction to the limb increased NF-κB activity, the transcription of specific atrophy-related genes, and caused a 35% decrease in muscle fiber cross-sectional area. We further found that inhibition of NF-κB activity, via gene transfer of a dominant-negative inhibitor of κBα (d.n. IκBα), prevented the increase in atrophy gene expression and muscle fiber atrophy. These findings demonstrate that when blood flow to skeletal muscle is restricted, repeated cycles of muscle contraction can cause muscle fiber atrophy that requires NF-κB-IκBα signaling.
منابع مشابه
The proteasome inhibitor MG132 reduces immobilization-induced skeletal muscle atrophy in mice
BACKGROUND Skeletal muscle atrophy is a serious concern for the rehabilitation of patients afflicted by prolonged limb restriction. This debilitating condition is associated with a marked activation of NFκB activity. The ubiquitin-proteasome pathway degrades the NFκB inhibitor IκBα, enabling NFκB to translocate to the nucleus and bind to the target genes that promote muscle atrophy. Although se...
متن کاملDistinct protein degradation profiles are induced by different disuse models of skeletal muscle atrophy.
Skeletal muscle atrophy can be a consequence of many diseases, environmental insults, inactivity, age, and injury. Atrophy is characterized by active degradation, removal of contractile proteins, and a reduction in muscle fiber size. Animal models have been extensively used to identify pathways that lead to atrophic conditions. We used genome-wide expression profiling analyses and quantitative ...
متن کاملCellular and molecular mechanisms of muscle atrophy
Skeletal muscle is a plastic organ that is maintained by multiple pathways regulating cell and protein turnover. During muscle atrophy, proteolytic systems are activated, and contractile proteins and organelles are removed, resulting in the shrinkage of muscle fibers. Excessive loss of muscle mass is associated with poor prognosis in several diseases, including myopathies and muscular dystrophi...
متن کاملXanthine oxidase and activated neutrophils cause oxidative damage to skeletal muscle after contractile claudication.
We previously showed oxidative damage and edema within skeletal muscle after contractile claudication. To investigate the sources of this oxidative damage in the gastrocnemius muscle, we administered allopurinol (Allo, to inhibit xanthine oxidase) and cyclophosphamide (Cyclo, to deplete neutrophils) before inducing contractile claudication in male Sprague Dawley rats. Contractile claudication (...
متن کاملProphylactic effects of swimming exercise on autophagy-induced muscle atrophy in diabetic rats
Diabetes decreases skeletal muscle mass and induces atrophy. However, the mechanisms by which hyperglycemia and insulin deficiency modify muscle mass are not well defined. In this study, we evaluated the effects of swimming exercise on muscle mass and intracellular protein degradation in diabetic rats, and proposed that autophagy inhibition induced by swimming exercise serves as a hypercataboli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Regulatory, integrative and comparative physiology
دوره 300 3 شماره
صفحات -
تاریخ انتشار 2011